COOPERATION, COMPETITION AND COGNITION IN WIRELESS NETWORKS From Theory to Implementation
نویسندگان
چکیده
Nodes and/or clusters of a wireless network operating on the same frequency can operate using three different paradigms: 1) Competition: Traditionally, this is information theoretically casted in the framework of interference channels. 2) Cooperation: Silent transmitters/receivers can help active transmitters/receivers in the transmission/reception of their messages, but have to extract this message from the underlying transmission or by other methods, and 3) Cognitive Radio Transmission: Some devices extract the message(s) of other transmitter(s) from their signals or by other methods, and use it to minimize interference from/to their own transmitted signals. Competition has been well-studied in the literature. Cooperation has been less studied and cognitive radio transmission has not been studied much. For the cooperative case, we demonstrate that most of the multiple-input multipleoutput (MIMO) space-time diversity gain can also be achieved through cooperative communications with single-antenna/multiple-antenna nodes when there is one receiving agent. In particular, for the single antenna case, we consider communication to take place between clusters of nearby nodes. We show the existence of cooperative codes for communications for which the intra-cluster negotiation penalty is in principle small and almost all the diversity gain of traditional space-time codes may be realized. For example, for a single transmitter node with two cooperators and one receiver node, if the cooperators have as little as 10 dB path loss advantage over the receiver, the penalty for cooperation over traditional space-time systems is negligible. Furthermore, we demonstrate and discuss the implementation of this idea in an orthogonal frequency division multiplexing (OFDM) system using a software defined ratio (SDR) platform. On the other hand, cooperative beamforming is an alternative way of realizing cooperative gain, particularly for a wireless sensor network. We analyze the statistical average properties and distribution of the beampattern of cooperative beamforming using the theory of random arrays. For cognitive radio transmissions, which captures a form of asymmetric cooperation, we define a generalized cognitive radio channel as an n-transmitter, m-receiver interference channel in which sender i obtains (causally or noncausally) the messages of senders 1 through i − 1. For simplicity, only the two sender, two receiver case is considered. In this scenario, one user, a cognitive radio, obtains (genie assisted, or causally) knowledge of the data to be transmitted by the other user. The cognitive radio may then simultaneously transmit over the same channel, as opposed to waiting for an idle channel as in a traditional cognitive radio channel protocol. Gel’fand-Pinsker coding (and the special case of dirty-paper coding) and ideas from achievable region constructions for the interference channel are used, and an achievable region for the cognitive radio channel is computed. In the Gaussian case, the described achievable region is compared to the upper bound provided by the 2× 2 Gaussian MIMO broadcast channel, and an interference-free channel. We then extend the results to provide an achievable region for cognitive multiple access networks.
منابع مشابه
Running head: THEORY OF MIND FOR COOPERATION AND COMPETITION 1 Distinct neural patterns of social cognition for cooperation versus competition
How do people consider other minds during cooperation versus competition? Some accounts predict that theory of mind (ToM) is recruited more for cooperation versus competition or competition versus cooperation, whereas other accounts predict similar recruitment across these two contexts. The present fMRI study examined activity in brain regions for ToM (bilateral temporoparietal junction, precun...
متن کاملDistinct neural patterns of social cognition for cooperation versus competition
How do people consider other minds during cooperation versus competition? Some accounts predict that theory of mind (ToM) is recruited more for cooperation versus competition or competition versus cooperation, whereas other accounts predict similar recruitment across these two contexts. The present fMRI study examined activity in brain regions for ToM (bilateral temporoparietal junction, precun...
متن کاملThe Cultural Category of Cooperation: A Cultural Consensus Model Analysis for China and the United States
We provide evidence that cooperation is a cultural category, and that what it means to cooperate is culturally conditioned. We use a cultural consensus model analysis to assess which types of situations people categorize as cooperation and whether these categorizations are consistent within and across China and the United States. The data support revisiting the role of cognition in mediating co...
متن کاملTwo Key Steps in the Evolution of Human Cooperation: The Interdependence Hypothesis
Modern theories of the evolution of human cooperation focus mainly on altruism. In contrast, we propose that humans’ species-unique forms of cooperation—as well as their species-unique forms of cognition, communication, and social life—all derive from mutualistic collaboration (with social selection against cheaters). In a first step, humans became obligate collaborative foragers such that indi...
متن کاملThe neural bases of cooperation and competition: an fMRI investigation.
Cooperation and competition are two basic modes of social cognition that necessitate monitoring of both one's own and others' actions, as well as adopting a specific mental set. In this fMRI, study individuals played a specially designed computer game, according to a set of predefined rules, either in cooperation with or in competition against another person. The hemodynamic response during the...
متن کامل